Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Small ; : e2310587, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546418

RESUMO

The process of N-doping is frequently employed to enhance the properties of carbon quantum dots. However, the precise requirements for nitrogen precursors in producing high-quality N-doped carbon quantum dots (NCQDs) remain undefined. This research systematically examines the influence of various nitrogen dopants on the morphology, optical features, and band structure of NCQDs. The dots are synthesized using an efficient, eco- friendly, and rapid continuous hydrothermal flow technique. This method offers unparalleled control over synthesis and doping, while also eliminating convention-related issues. Citric acid is used as the carbon source, and urea, trizma base, beta-alanine, L-arginine, and EDTA are used as nitrogen sources. Notably, urea and trizma produced NCQDs with excitation-independent fluorescence, high quantum yields (up to 40%), and uniform dots with narrow particle size distributions. Density functional theory (DFT) and time-dependent DFT modelling established that defects and substituents within the graphitic structure have a more significant impact on the NCQDs' electronic structure than nitrogen-containing functional groups. Importantly, for the first time, this work demonstrates that the conventional approach of modelling single-layer structures is insufficient, but two layers suffice for replicating experimental data. This study, therefore, provides essential guidance on the selection of nitrogen precursors for NCQD customization for diverse applications.

2.
Sci Rep ; 12(1): 13806, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970901

RESUMO

Carbon quantum dots (CQDs) derived from biomass, a suggested green approach for nanomaterial synthesis, often possess poor optical properties and have low photoluminescence quantum yield (PLQY). This study employed an environmentally friendly, cost-effective, continuous hydrothermal flow synthesis (CHFS) process to synthesise efficient nitrogen-doped carbon quantum dots (N-CQDs) from biomass precursors (glucose in the presence of ammonia). The concentrations of ammonia, as nitrogen dopant precursor, were varied to optimise the optical properties of CQDs. Optimised N-CQDs showed significant enhancement in fluorescence emission properties with a PLQY of 9.6% compared to pure glucose derived-CQDs (g-CQDs) without nitrogen doping which have PLQY of less than 1%. With stability over a pH range of pH 2 to pH 11, the N-CQDs showed excellent sensitivity as a nano-sensor for the highly toxic highly-pollutant chromium (VI), where efficient photoluminescence (PL) quenching was observed. The optimised nitrogen-doping process demonstrated effective and efficient tuning of the overall electronic structure of the N-CQDs resulting in enhanced optical properties and performance as a nano-sensor.


Assuntos
Pontos Quânticos , Amônia , Carbono/química , Glucose , Nitrogênio/química , Pontos Quânticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...